Using Hidden Markov Models to Characterize Student Behaviors in Learning-by-Teaching Environments
نویسندگان
چکیده
Using hidden Markov models (HMMs) and traditional behavior analysis, we have examined the effect of metacognitive prompting on students’ learning in the context of our computer-based learning-by-teaching environment. This paper discusses our analysis techniques, and presents evidence that HMMs can be used to effectively determine students’ pattern of activities. The results indicate clear differences between different interventions, and links between students learning performance and their interactions with the system.
منابع مشابه
Mining Student Behavior Models in Learning-by-Teaching Environments
Abstract. This paper discusses our approach to building models and analyzing student behaviors in different versions of our learning by teaching environment where students learn by teaching a computer agent named Betty using a visual concept map representation. We have run studies in fifth grade classrooms to compare the different versions of the system. Students’ interactions on the system, ca...
متن کاملPromoting Motivation and Self-Regulated Learning Skills through Social Interactions in Agent-based Learning Environments
We have developed computer environments that support learning by teaching and the use of self regulated learning (SRL) skills through interactions with virtual agents. More specifically, students teach a computer agent, Betty, and can monitor her progress by asking her questions and getting her to take quizzes. The system provides SRL support via dialog-embedded prompts by Betty, the teachable ...
متن کاملIntroducing Busy Customer Portfolio Using Hidden Markov Model
Due to the effective role of Markov models in customer relationship management (CRM), there is a lack of comprehensive literature review which contains all related literatures. In this paper the focus is on academic databases to find all the articles that had been published in 2011 and earlier. One hundred articles were identified and reviewed to find direct relevance for applying Markov models...
متن کاملComparative Action Sequence Analysis with Hidden Markov Models and Sequence Mining
Computer-based learning environments produce a wealth of data on student learning interactions. This paper presents an exploratory data mining methodology for assessing and comparing students’ learning behaviors from these interaction traces. In the first phase of this methodology, hidden Markov models (HMMs) are generated to model learning behaviors of the student groups being compared (e.g., ...
متن کاملModeling and Measuring Self-Regulated Learning in Teachable Agent Environments
Our learning-by-teaching environment has students take on the role and responsibilities of a teacher to a virtual student named Betty. The environment is designed to help students learn and understand science topics for themselves as they teach and monitor their agent. This process is supported by adaptive scaffolding and feedback through interactions with the teachable agent and a mentor agent...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008